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Absence or existence of intrinsic optical bistability of coupled ion pairs in
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Abstract

There has been a number of papers [2–4,8] published which deal with the prediction of intrinsic optical bistability of coupled ion pairs
in a coherent radiation field. This coupling can be different, either electromagnetic near-field coupling of the transition dipoles or other
more general interactions. In the last year Malyshev et al. published a paper in which the authors deny the existence of this bistability. In
this paper the reason is discussed for this discrepancy, which seems to be due to different approaches of introducing the external phase
destroying perturbations. The bistability is based on an inversion-dependent resonance frequency of coupled ions which can generally be
important for phase-sensitive effects.  2000 Elsevier Science S.A. All rights reserved.
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1. Introduction and the heat bath. There are no problems with simple
systems, as e.g., two-level systems in contact with the

There are two formalisms to treat open systems which phonon field of a crystal. In this case, the relaxation
are in dissipative contact with another energy accepting or terms are obvious. But the situation becomes less
spending system generally called a heat bath. obvious for more complex systems and the problem is

that the choice of the relaxation terms and of the wave
1. Rate equations: they connect the populations of differ- functions can significantly influence the result of the

ent states of a system by incoherent transition prob- calculations. For this reason, one has to keep in mind
abilities. They can describe the dynamics of a system that the relaxation rates represent physical interactions,
on a time scale which is long compared to the quantum which determine the choice of the proper wave func-
mechanical coherence times of the states involved. Rate tions in the same way as the explicit Hamiltonian. So,
equations are useful, e.g., to describe the phonon-as- in the case of coupled ion pairs in a coherent radiation
sisted transfer of excitation energy between rare-earth field, the calculations can give contradicting results, the
ions in solids. The short lifetimes of the phonons absence or presence of an intrinsic optical bistability
always guarantee an incoherent process on the time (IOB), an interesting bistability which works without
scale of the metastable electronic states. external feedback and offers very short switching times.

2. Density matrix: this formalism bases on a quantum
mechanical description of the dynamics of a system In this paper both methods of calculation will be
under the influence of its reversible internal and exter- discussed and the reason for the different results will be
nal interactions. In addition it allows to introduce shown.
dissipative interactions with an external heat bath by
appropriate relaxation terms. The details of the dissipa-
tive relaxations do not matter and different interactions 2. Hamiltonian
can be subsumed into the same relaxation rate. But the
phenomenologically introduced relaxation rates have to For reasons of simplicity we treat the ion pair as two
represent in a realistic way the physical processes of coupled two-level systems as shown in Fig. 1 together with
interaction between the quantum mechanical system the Hamiltonian H. H is the Hamiltonian of the two0

isolated ions, H(1,2) the ion–ion interaction, and H isRF
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Fig. 1. Scheme of the two interacting two-level systems. H is the Hamiltonian of the two noninteracting ions, H(1,2) their mutual interaction, and H0 RF

their interaction with the electromagnetic field E(v,t) by their dipole moments p. g and g are the relaxation rates of the population and of the phasea ab

correlation, respectively.

electromagnetic field E(v,t). Since the distance between therefore the well-known Dicke functions [5] given in Fig. 2
˚the ions is very small (|5 A) as compared to the together with the resulting energy level scheme. The

˚wavelength of light (|5000 A), we can set the spatial resonance splitting between the symmetric and antimetric
1 2phase difference of the light wave between both ions singly excited states C and C is twice the interaction1 1

kr (0. With this long-wavelength approximation the matrix element12

interaction Hamiltonian between the electromagnetic field
"´ 5 ka b uH(1,2)ua b l (7)1 2 2 1and the ion pair simplifies to:
Since both interaction Hamiltonians have positive parity→ → →2iv t under ion permutationH 5 1/2E e [p (1) 1p (2)] 1 c.c. (5)RF 0

1 1H 5 H , H(1,2) 5 H(1,2) , (8)For the interaction Hamiltonian H(1,2) we choose for RF RF

reasons of simplicity a product form (2). It can be realized they can connect only states with the same parity. So, the
e.g. by the near-field dipole–dipole interaction between the Hilbert space of the pair reduces to three states excluding
ions. Furthermore, we assume that h(i) has only non-

]the antimetric singly excited state C .1diagonal matrix elements in the wavefunctions of ion i.
Looking now at the full Hamiltonian (1,2,5) we see that

it shows permutation symmetry with respect to interchange
3. Relaxation terms

of ions 1 and 2

The equation of motion is given by the von NeumannP H 5 H (6)12

equation including the relaxation terms (RT)
The symmetry-adapted wavefunctions of the pair are

i
]~r 5 2 [H, r] 1 RT (9)
"

In the chosen basis set of wavefunctions it has the matrix
form

i
]~r 5 2 kku[H, r]ull 2 a rk,l kl kl" (10)

1 1 1with k, l 5 0 , 1 , 2

These are the equations of motion as given by Malyshev et
al. [1]. They have the following properties:

1. The Hamiltonian and the relaxations connect only the
symmetric Dicke states. In order to satisfy this con-
dition, the interactions with the heat bath have to be
symmetric under the exchange symmetry of the ions 1
and 2 like the Hamiltonian. This is a severe restriction
to the relaxation processes, which is realized e.g. for
spontaneous photon emission. But it is not fulfilled forFig. 2. Energy-level scheme of the pair coupled by the interaction

H(1,2). 2´ is the resonance splitting. ion–phonon interaction as will be discussed later on.
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2. They are exactly linear in the matrix elements of the relaxation can be neglected. The phase relaxation is
density operator since the Hamilton operator, the com- dominated by elastic phonon scattering including as
mutator operation and the relaxation terms are all linear intermediate states also nearby crystal-field levels not
by themselves. The system does not contain any non- explicitly given in Fig. 1. Since the phonons have
linearity necessary for an IOB as discussed in more different wavelengths and different directions relative to
detail by Malyshev et al. [1]. Increasing the intensity of the pair axis, the phase relaxations at both ions of the
the coherent radiation field, the pairs show a simple dimer can be assumed to be stochastic and uncorrelated
saturation behaviour [1]. in good approximation.

The situation becomes different if the ion pair is
4. Calculationsembedded in a dense environment as in a crystal. In this

case the dominating relaxation mechanism is the ion–
For reasons of mathematical simplicity the calculationsphonon interaction. This interaction has the following

[4] were carried out in the 4-dimensional product spaceproperties:
(a , b )3(a , b ) (Fig. 1).1 1 2 2

This allows to use the symmetry between the ions 1 and1. Since the phonons have wavelengths comparable with
2 and to introduce the identical but uncorrelated relaxa-the ion–ion distance, the long-wavelength approxima-

→ → tions at both ions in a simple and adequate way.tion k ? r ¯0 valid for photons does not hold for
The calculations could be done also in the basis of allphonons. The spatial phonon phase is different at both

four Dicke states introducing the relaxations in a properions and there is no permutation symmetry between the
way and introducing simultaneously all three externalions anymore. Thus the ion–phonon interaction does
interactions, the ion–ion, the ion–phonon and the inter-not have a definite parity and can, in principle, connect
action with the radiation field. The result is expected to beall four Dicke states of the pair. Consequently, the
the same since the product states and the Dicke states areproblem does not stay three-dimensional in Hilbert
related one to another by a unitary transformation.space as suggested by the Hamiltonian, but becomes

In the course of the calculations the following additionalfour-dimensional due to the relaxation processes be-
approximations were made:tween the ions and the phonons.

2. The ion–phonon interaction is dominated by the inter-
1. The density operator r (1,2) of the pair is taken in theaction of the ion with the next ligands. The ion–ion

product forminteraction in the dimer generally extends over a larger
distance with one or more ligands between them. r(1,2) 5 r(1) ? r(2) (12)
Although this interaction is a resonant one, it is This approximation neglects fluctuations of the form
generally not to be expected that it can definitely

H 5 (h(1) 2 kh(1)l)(h(2) 2 kh(2)l) (13)dominate the ion–phonon interaction. Therefore, both f

interactions have to be simultaneously introduced into but it allows to reduce the 434 density matrix of the
the calculations as competing interactions together with pair into two coupled 232 matrices of the single ions
the interaction with the radiation field: The ion–ion [4].
interaction and the radiation field tend to bring the 2. The well-known rotating wave approximation (RWA)
phases of the ions into the ones of the Dicke states, was used.
whereas the ion–phonon interaction tends to scramble
them in a stochastic way. The full density matrix can be reduced by taking the

3. The optical energy gap "v is of the order of 20 000 trace over one of the ions0
21cm , the phonon energies usually range up to about Tr r(1,2) 5 r(2)Tr r(1) 5 r(2) (14)21 1 11000 cm . So, it is obvious that the ion–phonon

Doing the same for the equation of motioninteraction does not significantly contribute to the
relaxations over the optical gap. These relaxations are i

]~r(1,2) 5 2 [H, r(1,2)] 1 RT (15)expected to be mainly due to spontaneous emission of "
radiation and/or other spontaneous processes. one finds the equation of motion of one ion under the

4. It is known from coherent-transient experiments on influence of the other one.
13rare-earth ions in solids, e.g. Pr in LaCl [6,7], that3 i

]~r(2) 5 Tr [H, r(1,2)] 1 RTalready at liquid helium temperatures the phase relaxa- 1"
tion time t is orders of magnitude shorter than the2 i
lifetime t of the excited state, i.e. ]5 2 [H (2), r(2)] 1 RT1 eff"
g 4 g (11)ab a H (2) 5 H (2) 1 H (2) 1 h(2)Tr (h(1)r(1))eff 0 RF 1

This means that the contribution of t to the phase RT 5 2 g ? r , 2 g ? r (16)1 a aa ab ab



J. Heber / Journal of Alloys and Compounds 300 –301 (2000) 32 –37 35

for the diagonal and non-diagonal matrix element, respec-
tively.

The last term in the effective Hamiltonian represents the
coupling between both ions depending on the current status
of the other one. This term already points at a mutual
feedback between both ions responsible for the IOB. The
stationary solution was found under the condition that both
ions are excited identically. This is justified by the long-
wave approximation which states that the coherent electro-
magnetic field is identical in phase and amplitude at both
ions. The result is an inversion-dependent resonance
frequency of the pairs based on the mutual status-depen-
dent interaction. For the absorbed energy we find the
proportionality [4]

→ → 2 Fig. 4. IOB for the fixed parameter ´ /g 5 20. ‘Non-resonant’ excitation:ab2 (E p ) n0
(v 2 v) /g 5 0, 61, 63, 610.]]]]]]W | , n 5 r 2 r (17) 0 ababs 2 aa bbv 2 v 2 ´n0

]]]]1 1F Ggab
resonance frequency of the single ions v . Fig. 4 shows the0

This equation is of third order in the inversion n and dependence of the IOB on the detuning v 2 v for a fixed0

therefore a bistable behaviour of the pairs can be expected parameter ´ /g . It is obvious that detunings v 2 v 5ab 0

for certain parameters g and ´. The strongly nonlinear 6g are already intolerable for experimental realizationab ab

dependence of the excited-state population r as function and applications.aa

of a normalized intensity s of the radiation field [4] is So, we get as condition for the existence of the IOB the
shown in Fig. 3. It demonstrates that for ‘resonant’ relation
excitation v 5v bistable behaviour starts from ´ /g (50 ab ´

]Dv , g < (18)and becomes more pronounced for greater values. For the 0 ab 5
negative slopes of r (s) the system is unstable and jumpsaa

Whilst g can be adjusted by choosing an appropriateabat the turning points to the stable branch with the same
crystal temperature, the condition Dv < ´ /5 is hard to0value of s as indicated by the arrows. The very pro-
realize for crystals doped with rare-earth ions. It needsnounced bistability and the fast switching time, expected to

21 very small inhomogeneous linewidths because the inter-be of the order of the phase-relaxation time g , look veryab
action energy between the rare-earth ions in crystals ispromising for application as e.g. for optical computers. But

21typically limited to "´(1 cm .there is a serious drawback. The bistability reacts quite
sensitively and in an asymmetric way to deviations be-
tween the frequency of the electromagnetic field v and the

5. Discussion

The results of the calculation can easily be discussed in
the product space using Fig. 5. According to (17) the
inversion-dependent resonance frequency is given by

v 5 v 2 ´n (19)R 0

For low intensities of the electromagnetic field E→0 both
ions are in the ground state and n521. This yields for the
resonance frequency v 5 v 1 ´ 5 v , i.e. the resonanceR 0 1

frequency of the coupled pair as expected from the Dicke
1 1wavefunctions for the transition C →C . Increasing the0 1

electromagnetic field E5E(v ) the ions show only weak0

absorption because v is far out in the wing of the0

resonance profile. But, by this weak absorption the inver-
sion increases slightly and shifts the resonance frequency
v of the coupled ions closer to v further increasing theR 0

absorption, the inversion, and the shift of the resonanceFig. 3. Intrinsic optical bistability (IOB) for certain parameters ´ /g .ab
profile towards v . By this positive feedback the systemr 5population of the excited state, s 5normalized intensity of the 0aa

electromagnetic field [4]. ‘Resonant’ excitation: v 5v . becomes unstable and jumps to the stable limit n 5 0,0
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expected introducing the ion–ion and ion–phonon interac-
tions simultaneously as competing effects into the calcula-
tions. A subsequent introduction of both interactions
prevents this competition. Introducing first H(1,2) one gets

1 2the split states C and C (Fig. 2). Introducing in a1 1

second step the electron–phonon interaction, it can only
1 2generate inelastic phonon transitions between C and C1 1

but not a coherent mixed state as needed for the IOB. The
absence of IOB for ion pairs as stated by Malyshev et al.
[1] bases just on this subsequent introduction of the ion–
ion and ion–phonon interaction. So, the existence of the
IOB in a coherent electromagnetic field seems to be
realistic for dimers in a solid.

Unfortunately, the experimental situation is not very
31Fig. 5. Discussion of the IOB due to the inversion dependent resonance convincing, yet. In LaF :Pr we could only find strong3frequency v 5 v 2 ´n; inversion n 5 r 2 r . 31R 0 aa bb instabilities of the fluorescence of Pr pairs in a coherent

laser field which were strongly correlated with the tem-
perature dependence of the dephasing rate of the single

31Pr ions [8]. Bistability could not be found. The reason is
v 5 v . Reducing now the electromagnetic field the probably the inhomogeneous detuning of the monomersR 0

system tries to keep its absorption maximum at the pump which introduces instabilities in addition to the bistability.
frequency v as long as possible and finally jumps back to These instabilities can be described by the same equations0

v (v by the same positive feedback effect as before but of motion as the IOB [8] thus proving the common modelR 1

now in the other direction. so some extend.
In the Dicke functions the IOB can only be explained by The existence of an inversion-dependent resonance

mixing of the symmetric and antimetric singly excited pair frequency of coupled ions as given by (17) has conse-
states due to the phonon scattering. Accepting this idea, the quences for all phase-sensitive optical effects like coherent
wavefunction of the coupled pair in the first excited state transients. It means that the resonance frequency of the
would be ions is slightly shifting during the decay time of the

excited states. In [8] it was shown by numerical calcula-1 1 2 2
f 5 c C 1 c C (20)1 1 1 tions that the photon echo can strongly be quenched by this

effect. This is in accordance with the experimental ex-with a resonance frequency
perience that photon echos can be found only in very1

]v 5 kf uH 1 H(1,2)uf l diluted doped crystals. Similar quenching can be expectedR 1 0 1"
in other coherence experiments as well.

1 2 2 2
5 v 1 ´(uc u 2 uc u ) (21)0

The correlation between this expression for the resonance
frequency and the inversion n can be found by means of

6. Conclusions(19) and the normalization condition for f .1

1 2 n 1 1 n1 2 2 2 1. Theory predicts the existence of IOB for ion pairs in]] ]]uc u 5 uc u 5 (22)2 2 solids if the ion–ion interaction and the dephasing by
The shift of the resonance frequency from v 1 ´ to v by ion–phonon interaction are introduced simultaneously0 0

increasing the optical pumping is thus represented by a as competing processes.
1 2 2 2change of the coefficients from uc u 5 1, uc u 5 0 to 2. The experimental realization of the IOB in solids is

1 2 2 2uc u 5 uc u 5 0.5 for E → ~ and n→0. The resulting difficult because of the inhomogeneous line broadening.
wavefunctions would be 3. The inversion-dependent resonance frequency of cou-

pled ions can quench phase-sensitive optical effects.a b1 1 21 2]f 5 (C 6C ) 5 (23)H]1 1 1Œ a b2 2 1

This means a complete decoupling of the pairs by the
combined interaction of the radiation field and the ion– Acknowledgements
phonon interaction, a situation which physically seems to
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A mixed wavefunction as given by (20) can only be 0 (R,S).
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